
 QEX July/August 2015 3

This project began with the purchase of
an Si5351A clock generator breakout board
for less than $8 from Adafruit Industries.
Designed as a substitute for crystal oscillator
clocks, it features three output ports for
frequencies between 8 kHz and 160 MHz.
Although the board is specified for a wider
bandwidth, this project is limited to 1
through 112.5 MHz.

Figure 1 — I constructed the VFO on a
piece of perfboard. The heatsink shown
at the top left corner of the board is for

the 7805 voltage regulator. The regulator
is not required for the basic non-GPS

configuration of the Si5351 VFO project,
if used without the display backlight. The
VFO output signals connect to the CLK1
and CLK2 connectors at the edge of the

Si5351 board. The Arduino Nano is between
the Si5351 board and the display board.

At the bottom left of the perfboard are the
GPS connections. Also note the rotary

encoder to the left side of the perfboard. The
pushbutton switches were not included on

this version of the VFO.

Figure 2 — Here is a completed VFO project, housed in a plastic project box. The
Resolution, Band Select, and Reset pushbutton controls are located just below the

rotary encoder.

Figure 1 shows my project, built on a
piece of perfboard. The Si5351 board is the
top board on the right side of the perfboard.
Just below that is the Arduino Nano board
I used to control the oscillator. This version
uses a rotary encoder to set the operating
frequency. You can see the encoder off the
left side of the board. Figure 2 shows a
completed unit, packaged in a plastic project
box. The Resolution, Band Select, and Reset
pushbuttons are on the right, just below the
rotary encoder.

The Si5351A board does have limitations.
Although it is a highly capable and stable
board, the output is a square wave with
odd harmonic frequencies present in the
output. The square wave output does make

a good source for some mixers. Phase
noise is also higher than other popular
programmable signal sources. A quick
search of the Internet will yield a wealth
of data concerning the performance of the
Si5351A IC. Builders are urged to consider
phase noise and crosstalk limitatinos before
using this IC in their project.

A simplified version of the VFO can
be built without the GPS module. Figure
3 shows the circuit for this configuration.
Figure 4 shows the schematic diagram for
the complete circuit, with GPS module,
rotary encoder and pushbuttons.

Unlike a GPS disciplined oscillator
(GDO) using a phased lock loop (PLL), this
project uses a GPS 1 pulse per second (pps)

Gene Marcus, W3PM/GM4YRE

113 Wickerberry Lane, Madison, AL 35756: w3pm@arrl.net

An Arduino Controlled
GPS Corrected VFO

A VFO that provides 1 to 112.5 MHz signals on two independent outputs. Use
it as a stand alone unit or with a GPS receiver to improve frequency accuracy.
UTC and six digit grid square locations are also displayed in the GPS Mode

4 QEX July/August 2015

output to act as a precision frequency counter
gate. An Arduino Nano (or Uno) is used as
a frequency counter to calculate a correction
factor to use when programming the Si5351
board. Although not as accurate as a GDO,
this simple method provides a variable
signal source from 1 to 112.5 MHz with an
uncertainty of better than 1 part in 107.

The Arduino provides the processing
power required to calculate the frequency,
control the Si5351A board, serve as a UTC
timekeeper, and as an added bonus, calculate
your 6 digit Maidenhead grid square locator.

Favorite operating frequencies are stored
in software and are accessed by the Band
Select pushbutton. Each band may be
configured in a VFO only or VFO/LO
combination. The Si5351A CLK1 output
port is the VFO and CLK2 is used as an LO.
The displayed frequency is arithmetically
corrected when the VFO/LO configuration
is used. Multiple bands can be configured in
this manner. A programmable offset function
allows you to use the unit for transceiver
operation.

Theory of Operation
The Si5351A is based on a PLL/VCXO

Figure 3 — This is the schematic diagram for the basic non-GPS configuration of the Si5351
VFO project. Either an Arduino Nano or Arduino Uno can be used.

and high resolution MultiSynth fractional
divider architecture. The Si5351A board can
generate any frequency up to 150 MHz on
each of its outputs. System short and long
term frequency uncertainties are attributed to
the onboard 25 MHz clock.

One of the three Si5351A outputs
(CLKØ) is programmed to 2.5 MHz and
routed to the Arduino’s frequency counter
input port (pin D5). The 1 pulse per second
output from the GPS receiver is routed to the
Arduino’s interrupt 0 input port (pin D2) to
act as a counter gate. The Arduino counts
the 2.5 MHz input over a 40 second gate
time, resulting in a 100 MHz total count.
This count is used to recalculate the 25 MHz
clock frequency. Total system uncertainty,
including calculation resolution limitations
and clock drift during counter gate time, is
better than 1 part in 10 million. The VFO
frequency is updated every 40 seconds, or
when the frequency is changed. Typical
frequency uncertainties versus time for GPS
and non-GPS configurations can be seen in
Figures 5 and 6.

When the unit is first turned on, the GPS
processing routines are enabled to determine
the correct UTC and 6 digit Maidenhead

grid square location. When the software
determines that valid data has been received,
the GPS processing routines are disabled.
At this point, frequency accuracy and time
is maintained by the GPS 1 pps signal. GPS
NMEA processing is turned off to eliminate
processing conflicts and resultant frequency
counter errors.

Excellent library routines are available on
the internet to simplify Si5351A frequency
programming. Instead, I chose to program
the Si5351A PLL and MultiSynth functions
directly without the use of library routines.
The resultant code is very simple compared
to other routines, but works quite nicely in
this application.

I found I could easily program the
Si5351A board up to 150 MHz using PLL
divider techniques. Unfortunately, PLL
divider techniques create glitches each
time the frequency is changed. Fixed PLL
frequencies using MultiSynth division
provide glitch-free tuning, but the frequency
range is limited to 112.5 MHz using this
method.

Options
The unit may be built without the GPS

receiver and used as a stand-alone VFO (refer
to the software installation instructions). If
used in the stand-alone mode, you can expect
a drift rate of approximately 1.6 Hz / °F
(2.8 Hz / °C). Operating the VFO in stand-
alone mode also provides an excellent means
to test the project prior to connecting the GPS
related hardware.

The frequency is controlled either by the
rotary encoder or the frequency up/down
pushbuttons. You may want to include either
the encoder or pushbuttons, or both.

Construction
Construction of the VFO unit is not critical

provided adequate RF layout techniques are
used. Do not use long unshielded wires for
RF and GPS 1 pps connections. I first built
the system using a solderless breadboard
without any problems. Later, I transferred the
circuit to a RadioShack perfboard.

The Si5351A board and LCD may be
directly powered from the 5 V pin of the
Arduino. A separate 5 V DC source is
required if you use the LCD backlight and/
or GPS receiver. A 7805A voltage regulator
with a small heat sink works nicely. LCD
backlight current requirements vary by
manufacturer, so circuit details are not
included here.

GPS antenna location is critical. A solid
GPS signal is necessary to ensure consistent
system operation. You should try to locate
the GPS antenna with a clear view to the sky,
away from noise sources. The GPS receiver

QX1507-Marcus03

LCD
Contrast

10 kΩ

+5V

A2

RST

A0

A1

A3

D9

D6

D10

D11

D12

D5

A5

A4

GND

+5V

Arduino Nano

CLK0CLK1

CLK2

SCL

SDA

GND

VIN

Adafruit Industries
Si5351 Clock Generator

CLK1

CLK2

Offset
Enable

D7

D8

Reset

Decrease
Frequency

Increase
Frequency

Band
Select

Resolution

1

3

5

7

9

11

12

13

14

15

16

16x2 LCD

2

4

6

8

10

HD44780

 QEX July/August 2015 5

requirements are 5 V operation, 1 pps output,
and 4800 baud NMEA data output in either
$GPGGA or $GPRMC format.

Software Installation and Setup
The Arduino download website (http://

arduino.cc/en/Main/Software) out-
lines installation instructions for the
first-time Arduino user. My Arduino
Si5351A_vfo.ino file is located at: (www.

1The software code for the Arduino Controlled
GPS-Corrected Dual Output Si5351A VFO,
current as of the publication date of this
issue of QEX, is available for download
from the ARRL QEX files web page. Go to
www.arrl.org/qexfiles and look for the file
7x15_Marcus.zip.

Figure 4 — The GPS corrected version of the Si5351 VFO project is shown in this schematic. The rotary encoder can be included to control
the operating frequency. Either an Arduino Nano or Arduino Uno can be used.

knology.net/~gmarcus/Si5351.html).
This file, current at publication time, is also
available for download from the ARRL
QEX files web page.1

Important note: The serial input port
(pin 0) is used for both GPS and USB serial
data. Do not attempt to upload software into
the Arduino Nano while receiving GPS data.
Disconnect the GPS NMEA data line before
uploading software.

The software will allow the displayed
frequency to be arithmetically corrected
when both output ports are used in the VFO/
LO configuration. Multiple bands may be
configured in this manner.

QX1507-Marcus04

LCD
Contrast

10 kΩ

+5V

A2

RST

A0

A1

A3

D9

D6

D10

D11

D12

D5

A5

A4

GND

+5V

Arduino Nano

CLK0CLK1

CLK2

SCL

SDA

GND

VIN

Adafruit Industries
Si5351 Clock Generator

CLK1

CLK2

Offset
Enable

D7

D8

Reset

Decrease
Frequency

Increase
Frequency

Band
Select

Resolution

1

3

5

7

9

11

12

13

14

15

16

16x2 LCD

2

4

6

8

10

HD44780

RX

D2

GND

2

RX data out

1 pps out

GND

GlobalSat EM-406A
GPS module

(or equivalent)

+5 V

0.1 μF

0.1 μF

D3

GND

D4

A

B

DigiKey P10859-ND
Rotary Encoder
(or equivalent)

IN

COM

OUT

7805

+12 V DC +5 V DC

4.7 μF 0.1 μF0.1 μF 4.7 μF

6 QEX July/August 2015

Near the beginning of the Arduino sketch
you will find the following variable that
defines the Band Select configuration:

Depressing the Band Select pushbutton
will step through the programmed
frequencies. Each entry follows the format
“{CLK1 frequency, CLK2 Frequency, math
command}.” You may modify, delete, or add
to the Band Select list. The last entry in the
list must be (0, 0, 0). The rotary encoder or
frequency up/down pushbuttons will only
control the CLK1 frequency.

All frequency entries are in Hz. The math
command controls how the frequency is
displayed. A “1” will add CLK1 and CLK2,
and a “2” will subtract CLK1 from CLK2. A
“0” results in no change.

For example: {5286500,8998500,1}, will
result in:
   CLK1 output: 5.286500 MHz
   CLK2 output: 8.998500 MHz
   LCD display: 14.285000 MHz

The Offset variable controls the frequency
offset. When the Arduino pin A2 is held low,
the programmed offset in hertz is added or
subtracted. Any positive or negative value of
hertz can be used to program the frequency
offset.

There are two ways to configure this
project: either as a GPS corrected frequency
source or as a stand-alone unit without GPS
correction. Locate the variable GPSflag near
the beginning of the Arduino sketch and set
the variable to either “1” for GPS correction
or “0” for non-GPS operation.

If you choose to use the project without
GPS correction, you can enter a correction
factor to allow for greater frequency accuracy.
To calculate and enter this correction factor,
perform the following steps:

1) Connect the VFO to a frequency
counter

2) Set the VFO to 25 MHz
3) Note the measured frequency in Hz

const unsigned long Freq_array [] [3] = {
{ 7030000,0,0 }, // CLK1=7.030 MHz, CLK2=0 MHz, Display=7,030.000 kHz
{ 1810000,0,0 },
{ 3560000,0,0 },
{ 7040000,0,0 },
{ 10106000,0,0 },
{ 14060000,0,0 },
{ 18096000,0,0 },
{ 21060000,0,0 },
{ 24906000,0,0 },
{ 28060000,0,0 },
{ 50060000,0,0 },
{ 5286500,8998500,1 }, // CLK1=5.2865 MHz, CLK2=8.9985 MHz, Display=14,285.000 kHz
{ 5016500,9001500,2 }, // CLK1=5.0165 MHz, CLK2=9.0015 MHz, Display=3,985.00 kHz
(0,0,0)

};

Figure 5 — This is a graph of the frequency versus time over the initial 60 minutes, for the
output from the non-GPS version of the VFO project. A constant room temperature was

maintained during the data collection. The drift rate is approximately 1.6 Hz / °F (2.8 Hz / °C).

Figure 6 — Here is the graph of the frequency versus time over the initial 60 minutes for the
GPS corrected VFO. A constant room temperature was maintained during this data collection.

Frequency corrections to bring the frequency back to normal are shown during the early
minutes of warm-up.

QX1507-Marcus05

Fr
eq

ue
nc

y
D

ev
ia

tio
n

(H
z)

Time (minutes)
0

–10

60

10

Non-GPS Stand-Alone Operation (with correction factor)
10 MHz (cold start over 60 minutes)

–5

0

5

10 20 30 40 50

QX1507-Marcus06

Time (minutes)
0

–10

60

Fr
eq

ue
nc

y
D

ev
ia

tio
n

(H
z)

–10

10

GPS Calibrated
10 MHz (cold start over 60 minutes)

–5

0

5

10 20 30 40 50

 QEX July/August 2015 7

Figure 10 — When you change the frequency step size on the GPS
version, the Grid Locator will be replaced by the step size on the display.

4) Subtract 25 MHz from the counter
reading

5) Note the difference in Hz (such as
–245)

6) Locate the variable CalFactor in the
Arduino sketch and enter the value.

Frequency uncertainty without GPS
calibration and without the calculated
correction factor is normally less than 1 kHz.

Operation
When first turned on, you will see

“Waiting for GPS” displayed on the LCD.
See Figure 7. (If GPS correction is not used,
the second line of the LCD will continually
display the frequency step resolution, as
shown in Figure 8.) It may take a few minutes
for the GPS receiver to lock and obtain valid
NMEA data. After the GPS receiver obtains

Figure 9 — When valid NEMA GPS data is received by the Arduino,
the second line of the display will show your six-digit Maidenhead

Grid Locator and the time, in UTC.

Figure 8 — If you build the non-GPS version, the initial display will
show the start-up frequency and the initial frequency step size.

Figure 7 — When you first turn on the GPS corrected VFO, you will see
the start-up frequency and the Waiting for GPS message on the display.

valid data, the “Waiting for GPS” display
will be replaced with the (UTC) time and
your 6 digit grid square locator. The system is
now ready for operation. See Figure 9.

Depress the resolution pushbutton to
select the frequency step. When the button
is depressed the selected resolution will
be displayed for a few seconds on the
second line of the LCD. See Figure 10.
The frequency may be changed either by
using the frequency up/down buttons or
the rotary encoder. Depressing the Band
Select pushbutton will step through the
programmed frequencies.

Experimentation
This is an open source project. You are

encouraged to experiment and improve
upon the system operation. Simple system

improvements such as using a 4 × 20 LCD
to display additional data can be easily
implemented. Variables containing latitude,
longitude, and the number of satellites in
view exist in the GPSprocess() subroutine.
More complex updates such as varying
the CLK2 LO frequency may also be
incorporated.

Gene Marcus, W3PM/GM4YRE, was first
licensed in 1963 as KN3YVP, and has held an
Amateur Extra Class license since 1968. He
was first licensed in Scotland as GM5AQM
in 1969. He received a First Class FCC
Radiotelephone license in 1977.

Gene completed an ASEE degree program at
Penn State University in 1968. After a four year
tour as a Cryptologic Technician with the US
Navy, he began a 32 year career in the field of
precision measurement equipment calibration.
In retirement he enjoys experimenting with
various RF and microprocessor projects, and
enjoys world travel with his wife, Phyllis.

